A Calorimetric Study of the Lanthanide Aluminum Oxides and the Lanthanide Gallium Oxides: Stability of the Perovskites and the Garnets

Yasushi Kanke^{*,1} and Alexandra Navrotsky^{+,2}

**National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; and* - *Princeton Materials Institute and Department of Geosciences, Princeton University, Princeton, New Jersey 08544*

Received November 7, 1997; in revised form July 16, 1998; accepted July 23, 1998

High-temperature solution calorimetry using a $2PbO \cdot B_2O_3$ solvent at 977 K was performed for *LnM*O₃ perovskites and $Ln₃M₅O₁₂$ garnets (*Ln* = La–Lu, Y; *M* = Al, Ga), α -Al₂O₃, and β -Ga₂O₃. The following four reactions were discussed from the viewpoint of thermodynamic parameters, ΔH , ΔS , and ΔV ; $LMO_3 = \frac{1}{2}Ln_3M_5O_{12} + \frac{1}{2}Ln_2O_3$, $Ln_3M_5O_{12} = 3LnMO_3 + M_2O_3$,
 $\frac{1}{2}Ln_3O_3 + \frac{1}{2}MO_2 = LnMO_3$ and $\frac{3}{2}Ln_3O_3 + \frac{5}{2}MO_2 = Ln_3MO_3$. $\frac{1}{2}Ln_2O_3 + \frac{1}{2}M_2O_3 = LnMO_3$, and $\frac{3}{2}Ln_2O_3 + \frac{5}{2}M_2O_3 = Ln_3M_5O_{12}$. The stability of *LnM*O₃ against the disproportionation to garnet plus sesquioxide is controlled almost entirely by ΔH and $P\Delta V$ but not by *T* ΔS . On the contrary, the stability of $Ln₃M₅O₁₂$ against disproportionation to perovskite plus sesquioxide is controlled not only by ΔH and $P\Delta V$ but also by T ΔS . The P -T boundary between $Ln_3M_5O_{12}$ and $3LnMO_3 + M_2O_3$ has a negative slope. The positive ΔS and negative ΔV for the disproportionation are caused by an increase in coordination number and an *increase* in bond distance. ΔH of perovskite formation is mainly controlled by two factors, the strengthening of the ionic bond in $Ln₂O₃$ with decreasing ionic radius of Ln^{3+} and the *weakening* of the ionic bond between Ln and the distant four O atoms in $LnMO₃$ with decreasing ionic radius of Ln^{3+} . ΔH of garnet formation is mainly controlled by two factors, the strengthening of the ionic bond in Ln_2O_3 with decreasing ionic radius of Ln^{3+} and the deviation of the ionic radius of Ln^{3+} from the optimum size for the garnet structure. **D***S* values of both perovskite formation and garnet formation are deduced to be negative, which suggests that *Ln*₂O₃ phases possess relatively large entropies. © 1998 Academic Press

INTRODUCTION

 $Ln^{3+}-M^{3+}-O$ binary oxides ($Ln =$ lanthanide; $M^{3+} =$ Al³⁺ (d^0), Ti³⁺–Fe³⁺ (d^1-d^5), Ga³⁺ (d^{10})) show interesting properties such as optical transparency (perovskites and

garnets: $M = A$ l, Ga), magnetism (perovskites: $M = Ti$, V, Mn; garnets: $M = Fe$), or high electrical conductivity at high temperatures (perovskites: $M = Cr$). Y₃Al₅O₁₂ is a well-known laser host material. Nd^{3+} -doped YAlO₃ and Cr^{3+} -doped $Gd_3(Ga, Sc)_2$ Ga_3O_{12} are potential candidates for laser materials [\(1](#page-11-0), [2\)](#page-11-0). LaTiO₃ shows a metal-insulator transition and antiferromagnetism $(T_N = 125 \text{ K})$ [\(3\)](#page-11-0). $La_{1-x}Sr_xVO_3$ is metallic with $x > 0.225$ and is insulating with $x < 0.225$ [\(4\).](#page-11-0) Perovskitelike $\text{La}_{2/3}\text{Ba}_{1/3}\text{MnO}_x$ shows giant negative magnetoresistance [\(5\)](#page-11-0). $Y_3Fe_5O_{12}$ and La-CrO³ are well-known magnetic and electric heater materials, respectively. The properties of the binary oxides are influenced by crystal structure. The binary oxides with larger Ln^{3+} ($Ln = La-Nd$) prepared by solid-state reaction at ambient pressure are perovskites for all *M* ions [\(Table](#page-1-0) [1\)](#page-1-0) (6–[9\)](#page-11-0). With decreasing size of Ln^{3+} , however, the oxides crystallize in various structure types at ambient pressure depending on *M* as follows: no perovskites but $Ln_4M_2O_9$ type phases and garnets $(M = Al, Ga)$ [\(6,](#page-11-0) [10\)](#page-11-0), exclusively perovskites independent of Ln^{3+} ($M = Ti$, V, Cr) [\(6](#page-11-0)–8), no perovskites but LuMnO₃-type structure $(M = Mn)$ [\(11\)](#page-11-0), and both perovskites and garnets $(M = Fe)$ [\(6\)](#page-11-0) [\(Table](#page-1-0) [1\)](#page-1-0).

Ideal perovskites, *AB*O₃, are cubic and consist of twelvecoordinated *A* atoms and octahedrally six-coordinated *B* atoms. The *A* and O atoms form face centered cubic type close-packed layers. However, the perovskites in the Ln^{3+} M^{3+} –O binary oxide systems are distorted into trigonal $(LnAIO_3: Ln = La-Nd)$ [\(6\)](#page-11-0) or orthorhombic GdFeO₃-type [\(12\)](#page-11-0) symmetries $(LnAIO_3; Ln = Sm–Lu, Y (6); LnVO_3;$ $(LnAIO_3; Ln = Sm–Lu, Y (6); LnVO_3;$ $(LnAIO_3; Ln = Sm–Lu, Y (6); LnVO_3;$ $Ln = La$ [\(13\)](#page-11-0), $Pr-Lu$, Y [\(8\)](#page-11-0); $LnMO_3$: $Ln = La-Lu$, Y, $M = Ti$, Cr, Mn, Ga). The distortion of the *M* coordination octahedra is small and is almost independent of Ln. In contrast, the distortion of the L_n coordination polyhedra is large and increases with decreasing ionic radius of Ln [\(14\)](#page-11-0). As distortion increases, the twelve O atoms surrounding a *Ln* atom separate into two types, eight first-nearest and four second-nearest O atoms. The difference between the mean *Ln*–O distance for the first-nearest O atoms and the

¹ To whom correspondence should be addressed. E-mail: kanke@nirim. go.jp.

² Present address: Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616.

 O_{12} 425

TABLE 1 $Ln^{3+}-M^{3+}-O$ Double-Oxide Systems ($Ln = Lanthanide;$ *M* = Al, Ti, V, Cr, Mn, Fe, Ga) Observed at Ambient Pressure^{*a*}

	Al	Ti	V	Cr	Mn	Fe	Ga
La	P	P	P	P	P	P	P/M
Pr	P	P	P	P	P	P	P/M
Nd	P	P	P	P	P	P	P/M/G
Sm	P/M	P	P	P	P	P/G	M/G
Eu	P/M	P	P	P	P	P/G	M/G
Gd	P/M/G	P	P	P	P	P/G	$\rm M/G$
Tb	P/M/G	P	P	P	P	P/G	G
Dy	P/M/G	P	P	P	P	P/G	G
Y	P/M/G	P	P	P	Н	P/G	G
Ho	M/G	P	P	P	H	P/G	G
Er	M/G	P	P	P	Н	P/G	G
Tm	M/G	P	P	P	Н	P/G	G
Yb	M/G	P	P	P	Н	P/G	G
Lu	M/G	P	P	P	Н	P/G	G

 a_P : perovskite, $LnMO_3$. M: 2/1 phase, $Ln_4M_2O_9$. G: garnet, $Ln_3M_5O_{12}$. H: LuMnO₃-type phase, LnMO₃.

mean *Ln*–O distance for the second-nearest O atoms increases with decreasing ionic radius of Ln [\(14\)](#page-11-0). The $Ln₄M₂O₉$ phases do not have a close-packed array of oxygen atoms and consist of seven-coordinated and octahedrally six-coordinated L_n cations and tetrahedrally four-coordinated *M* cations [\(10\)](#page-11-0). The garnets are also not close-packed structures and comprise eight-coordinated Ln^{3+} , octahedrally six-coordinated M^{3+} , and tetrahedrally four-coordinated M^3 ⁺. The LuMnO₃-type phases consist of seven-coordinated Ln^{3+} and five-coordinated M^{3+} cations (11) . If distortion is disregarded, Ln and O atoms in the $LuMnO₃$ -type phases would form close-packed layers.

Stability of the binary oxides is influenced by both temperature and pressure. [Shishido](#page-11-0) *et al*. (15) synthesized $Gd_3Al_5O_{12}$ by heating a stoichiometric amorphous sample at 1573 K for 1 h in air, followed by rapid quenching. $Gd_3Al_5O_{12}$ decomposed into $3GdAlO_3 + \alpha-Al_2O_3$ after being maintained at 1773 K for 24 h in air [\(15\)](#page-11-0). [Geller](#page-11-0) *et al*. (16) prepared $LnGaO_3$ perovskites ($Ln = Sm-Fr$), which had not been obtained by solid-state reaction, by quenching molten mixtures of Ln_2O_3 and Ga_2O_3 . The molten state was kept at temperatures ranging from approximately 1923 K for SmGaO₃ to approximately 2273 K for ErGaO₃ for about 10 min and then quenched. The $LnGaO₃$ perovskites were obtained as a single phase except for H_0GaO_3 and ErGaO₃. [Dernier](#page-11-0) *et al.* (17) obtained *LnAlO*₃ perovskites $(Ln = Ho-Lu)$ by high-pressure synthesis at 3.25 GPa and 1473 ± 10 K. [Marezio](#page-11-0) *et al.* (18, [19\)](#page-11-0) synthesized $LnGaO₃$ perovskites $(Ln = Sm-Lu, Y)$ at 7 GPa and 1273 K or at 4.5 GPa and 1273 K. Al garnets and Ga garnets disproportionate into corresponding perovskites and M_2O_3 phases under high pressure.

The $P-T$ stability of a phase is governed by its free energy. For a given reaction, the free energy change at a given pressure and temperature, $\Delta G(P, T)$ is given by

$$
\Delta G(P,T) = \Delta H^{\circ} - T\Delta S^{\circ} + \int_{1 \text{ atm}}^{P} \Delta V \mathrm{d}P, \quad [1]
$$

where ΔH° and ΔS° are the enthalpy and entropy change at 1 atm and the reference temperature, and the *P—*» integral reflects the effect of pressure. Several reactions govern the thermodynamic stability of these phases. Their formation from the oxides is given by

$$
\frac{1}{2}Ln_2O_3 + \frac{1}{2}M_2O_3 = LnMO_3
$$
 [2]

$$
\frac{3}{2}Ln_2O_3 + \frac{5}{2}M_2O_3 = Ln_3M_5O_{12}.
$$
 [3]

The relation of garnet and perovskite is controlled by possible disproportionation reactions

$$
LnMO_{3} = \frac{1}{5}Ln_{3}M_{5}O_{12} + \frac{1}{5}Ln_{2}O_{3}
$$
 [4]

$$
LnMO_{3} = \frac{1}{7}Ln_{3}M_{5}O_{12} + \frac{1}{7}Ln_{4}M_{2}O_{9}
$$
 [5]

$$
Ln_3M_5O_{12} = 3LnMO_3 + M_2O_3.
$$
 [6]

Furthermore, for $M = Fe$, oxidation–reduction reactions can be considered.

$$
\frac{1}{2}Ln_2O_3 + Fe + \frac{3}{4}O_2 = LnFeO_3
$$
 [7]

$$
\frac{3}{2}Ln_2O_3 + 5Fe + \frac{15}{4}O_2 = Ln_3Fe_5O_{12}.
$$
 [8]

[Katsura](#page-11-0) *et al*. (20) and [Kimizuka](#page-11-0) *et al*. (21) studied the temperature dependence of the standard free energy change, ΔG° , for reactions [7] and [8] by controlling oxygen partial pressure at temperatures 1273*—*1523 K. They discussed the ΔG° values from the viewpoint of tolerance factors and Madelung energies. To analyze the stability of the perovskites and the garnets as a function of temperature, it is more informative to discuss ΔH and ΔS separately rather than ΔG . The ΔH and ΔS parameters for reactions [2], [3], [4], and [6] with $M =$ Fe can be calculated on the basis of [Refs.](#page-11-0) [\(21\)](#page-11-0) and [\(22\)](#page-11-0). The calculated parameters shown in [Tables](#page-2-0) [2](#page-2-0) and [3,](#page-2-0) however, include significant errors, arising largely from uncertainties in determining the temperature dependence of reactions [7] and [8]. It would be advantageous to have direct measurements of ΔH and ΔS separately, both for the ferrites and for the aluminates and gallates.

High-temperature solution calorimetry using a lead borate solvent is a relevant method to determine the enthalpies of solid-state reactions (23*—*[33\)](#page-11-0). The method has been successfully applied to a number of systems. In this study,

Perovskite	ΔH_f° (kJ mol ⁻¹)	ΔS_{f}° (J K ⁻¹ mol ⁻¹)	Garnet	$\Delta H_{\rm f}^{\circ}$ (kJ mol ⁻¹)	ΔS_f° (J K ⁻¹ mol ⁻¹)
LaFeO ₃	$-44.35 + 12.55$	$24.45 + 4.18$			
PrFeO ₃	$-48.53 + 12.55$	$11.90 + 4.18$			
NdFeO ₃	$-44.35 + 12.55$	$16.08 + 4.18$			
SmFeO ₃	$-44.35 + 12.55$	$11.90 + 4.18$	$Sm_3Fe_5O_1$	$-238.49 + 41.84$	$-24.20 + 41.84$
EuFeO ₃	$-44.35 + 12.55$	$7.71 + 4.18$	$Eu_3Fe_5O_1$	$-238.49 + 41.84$	$-28.38 + 41.84$
GdFeO ₃	$-44.35 + 12.55$	$7.71 + 4.18$	$Gd_3Fe_5O_1$	$-234.30 + 41.84$	$-28.38 + 41.84$
TbFeO ₃	$-40.17 + 12.55$	$7.71 + 4.18$	$Tb_3Fe_5O_1$	$-209.20 + 41.84$	$-15.83 + 41.84$
DvFeO ₃	$-35.98 + 12.55$	$7.71 + 4.18$	$Dv_3Fe_5O_1$	$-184.10 + 41.84$	$-3.28 + 41.84$
HoFeO ₃	$-35.98 + 12.55$	$3.53 + 4.18$	$Ho_3Fe_5O_1$	$-133.89 + 41.84$	$26.01 + 41.84$
ErFeO ₃	$-35.98 + 12.55$	$3.53 + 4.18$	$Er_3Fe_5O_1$	$-83.68 + 41.84$	$55.30 + 41.84$
TmFeO ₃	$-27.61 + 12.55$	$7.71 + 4.18$	$Tm_3Fe_5O_{12}$	$-58.58 + 41.84$	$59.48 + 41.84$
YbFeO ₃	$-23.43 + 12.55$	$7.71 + 4.18$	$Yb_3Fe_5O_1$	$-75.31 + 41.84$	$46.93 + 41.84$
LuFeO ₃	$-19.25 + 12.55$	$7.71 + 4.18$	$Lu_3Fe_5O_{12}$	$-8.37 + 41.84$	$80.40 + 41.84$

TABLE 2 Enthalpy (ΔH_f°) and Entropy (ΔS_f°) of Formation from Monoxides at 298 K for Ferrites Calculated on the Basis of Ref. (21)^a

^a Perovskites: $\frac{1}{2}Ln_2O_3 + \frac{1}{2}Fe_2O_3 = LnFeO_3$. Garnets: $\frac{3}{2}Ln_2O_3 + \frac{5}{2}Fe_2O_3 = Ln_3Fe_5O_{12}$. ΔH° and ΔS° data of Fe, O₂, and Fe₂O₃ are quoted from Ref. (22). Fe: $\Delta S^{\circ} = 27.280 \text{ J K}^{-1} \text{mol}^{-1}$, Q_2 : $\Delta S^{\circ} = 205.146 \text{ J K}^{-1} \text{mol}^{-1}$, Fe_2O_3 : $\Delta H^{\circ} = -823.411 \text{ kJ} \text{mol}^{-1}$, $\Delta S^{\circ} = 87.466 \text{ J K}^{-1} \text{mol}^{-1}$.

 $Al^{3+}(d^0)$ and $Ga^{3+}(d^{10})$ were chosen as M^{3+} . Enthalpies of solution, ΔH_s , of $LnMO_3$ perovskites ($M = Al$, Ga), $Ln_3M_5O_{12}$ garnets ($M = Al$, Ga), α -Al₂O₃, and β -Ga₂O₃ were determined. Using the ΔH_s data and those for Ln_2O_3 measured by Takayama-Muromachi and Navrotsky (34), we will discuss the disproportionation reactions $[4]$ and $[6]$ and the formation reactions [2] and [3] from the viewpoint of the thermodynamic parameters, ΔH , ΔS , and ΔV .

EXPERIMENTAL

Sample Preparation

 $Ln₂O₃$ (Ln = La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Y: 99.9%), α -Al₂O₃ (99.9%), and β -Ga₂O₃ (99.9%) were dried at 1273 K for 1 h, 1273 K for 1 h, and 873 K for 1 h,

TABLE 3 Enthalpy (ΔH_d°) and Entropy (ΔS_d°) of Disproportionation of $LnFeO₃$ and $Ln₃Fe₅O₁₂$ at 298 K for Ferrites Calculated on the Basis of Refs. (21) and $(22)^a$

ΔH_a° [2] $(kJ \text{ mol}^{-1})$	$\Delta S_d^{\circ}[2]$ $(J K^{-1} mol^{-1})$	$\Delta H_\mathrm{d}^\circ$ [4] $(kJ \text{ mol}^{-1})$	ΔS_a° [4] $(J K^{-1} mol^{-1})$
$-3.3 + 15.1$	$-16.7 + 9.4$	$105.4 + 56.3$	60.0 ± 43.7
$-3.3 + 15.1$	$-13.4 + 9.4$	$105.4 + 56.3$	51.5 ± 43.7
$-2.5 + 15.1$	$-13.4 + 9.4$	$101.3 + 56.3$	51.5 ± 43.7
$-1.7 + 15.1$	$-10.9 + 9.4$	$88.7 + 56.3$	$39.0 + 43.7$
$-0.8 + 15.1$	$-8.4 + 9.4$	$76.1 + 56.3$	$26.4 + 43.7$
$9.2 + 15.1$	$1.7 + 9.4$	$25.9 + 56.3$	$-15.4 + 43.7$
$19.2 + 15.1$	$7.5 + 9.4$	-24.3 ± 56.3	-44.7 ± 43.7
15.9 ± 15.1	4.2 ± 9.4	-24.3 ± 56.3	-36.3 ± 43.7
$8.4 + 15.1$	$1.7 + 9.4$	$5.0 + 56.3$	$-23.8 + 43.7$
$17.6 + 15.1$	$8.4 + 9.4$	$-49.4 + 56.3$	-57.3 ± 43.7

"LnFeO₃ = $\frac{1}{5}$ Ln₃Fe₅O₁₂ + $\frac{1}{5}$ Ln₂O₃: ΔH_4° [2] and ΔS_4° [2]. Ln₃Fe₅O₁₂ $= 3LnFeO₃ + Fe₂O₃: $\Delta H_d^{\circ} [4]$ and $\Delta S_d^{\circ} [4]$.$

respectively. They were mixed in stoichiometric ratios for perovskites or garnets using an agate mortar and ethanol. The mixtures for $LnAIO_3$ perovskites ($Ln = La$, Nd, Sm, Eu, Gd, Dy) were pressed into disks and heated at 1473 K for 1 day in alumina crucibles. The products were ground and examined by powder X-ray diffractometry using $CuK\alpha$ radiation. Reaction was incomplete so the samples were reground with ethanol, pressed, and heated at 1573 K for 1 day. These grinding and heating procedures were repeated with increasing heating temperature at 100 K intervals until the complete reaction was seen. This step-by-step heating was effective to avoid partial melting. Pure LnAlO₃ perovskites ($Ln = La$, Nd, Sm, Eu, Gd, Dy) were obtained after heating runs at 1773 K. The other samples were prepared similarly with heating runs at 1473, 1573, 1673, and 1973 K for YAlO₃ perovskite, 1773 and 1873 K for $Ln₃Al₅O₁₂$ garnets ($Ln = Dy$, Ho, Er, Tm, Yb, Lu), 1773, 1873, and 1973 K for $Y_3Al_5O_{12}$ garnet, 1473, 1573, and 1673 K twice for $LaGaO₃$ and $NdGaO₃$ perovskites, and one heating run at 1673 K for $Ln_3Ga_5O_{12}$ garnets ($Ln = Sm$, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Y). Small amounts of Y_2O_3 and α -Al₂O₃ (<5%) were detected in the YAlO₃ specimen by powder X-ray diffractometry even after heating at 1973 K. No impurities, such as starting compounds and/or possible coexisting phases, were detected in any other specimen. α -Al₂O₃ and β -Ga₂O₃ were heated respectively at 1773 and 1473 K for 24 h and were ground before calorimetry. Quartz was dried at 573 K before mixture preparation as described next for calorimetry.

Solution Calorimetry

The high-temperature twin Calvet-type solution calorimeter and the technique used have been described elsewhere $(23, 24)$. The specimen $(8-25 \text{ mg})$ in a platinum sample folder and 30.0 g of $2PbO \cdot B_2O_3$ solvent in a platinum crucible were kept for $8-16$ h in the calorimeter at 977 K. The specimen was then dissolved into the molten solvent by several stirrings. After each dissolution run, a reference run with an identical stirring procedure was done to measure the stirring effect. After the experiment, the sample holder was checked by optical microscopy to confirm that all the specimen had been dissolved. Any sample dissolved completely within 45 min as described below. The heats of solution for the specimen were calculated after subtracting the stirring effect. Calibration was achieved by dropping small pieces of platinum into the calorimeters (23).

Rare earth containing oxides are difficult to dissolve in molten lead borate. They react slowly and tend to saturate the melt locally and possibly form borate precipitates (34). Indeed, preliminary experiments showed that none of the binary oxides dissolved completely within 50 min, leading to drawn-out calorimetric cures. The stirring-effect runs also showed large endothermic heat effects, indicating likely slow dissolution during additional stirring. Optical microscopy showed remaining undissolved sample.

To overcome this problem, we prepared a mechanical mixture of the binary oxide and quartz using an agate mortar. As quartz dissolves rapidly, we expected that the rare earth binary oxides would be dispersed in the solvent and precipitate formation would be suppressed. This method was successful. The molar ratios were determined to be $LnMO_3$: SiO₂ = 1:3 and $Ln_3M_5O_{12}$: SiO₂ = 1:6 by several trials. All of the mixtures dissolved completely within 40–45 min. Because the heat of solution of $SiO₂$ (quartz) is small in magnitude ($-4.18 \pm 0.10 \text{ kJ} \text{ mol}^{-1}$), the admixture introduced only a small additional heat effect.

To make certain no reaction occurred between the rare earth compound and quartz prior to dissolution, all of the mixtures were kept at 977 K for 24 h and were checked by powder X-ray diffractometry. No reaction was detected. The heats of solution for the binary oxides were calculated by subtracting the heat effect due to quartz from those of the mixtures.

RESULTS

Enthalpies of solution, $\Delta H_s(X)$, in 2PbO·B₂O₃ at 977 K and enthalpies of formation, $\Delta H_f(X)$, from monoxides at 977 K for binary rare earth oxide phases, X , are given in Table 4. The $\Delta H_s(Ln_2O_3)$ were taken from Ref. (34). $\Delta H_s(Ln\text{AlO}_3)$ and $\frac{1}{5}\Delta H_s(Ln_3\text{Al}_5\text{O}_{12}) + \frac{1}{5}\Delta H_s(Ln_2\text{O}_3)$ and

TABLE 4 Enthalpy of Solution (ΔH_s) in 2PbO·B₂O₃ at 977 K for Oxides and Enthalpy of Formation (ΔH_f) from Monoxides at 977 K for Perovskites and Garnets^a

Compound	ΔH_s (kJ mol ⁻¹)	ΔH_f (kJ mol ⁻¹)	Compound	ΔH_s (kJ mol ⁻¹)	$\Delta H_{\rm f}$ (kJ mol ⁻¹)
LaAlO ₃	16.64 ± 1.19 (4)	-63.17 ± 2.52	LaGaO ₃	6.08 ± 1.83 (5)	-50.86 ± 2.92
NdAlO ₃	15.28 ± 2.88 (7)	-41.36 ± 3.44	NdGaO ₃	4.96 ± 2.92 (5)	-29.29 ± 3.51
SmAlO ₃	$14.32 + 2.52(5)$	$-37.55 + 3.26$			
EuAlO ₃	$12.79 + 2.50(6)$	-30.52 ± 2.60			
GdAIO ₃	12.50 ± 2.40 (4)	-32.33 ± 2.96			
DyAIO ₃	$12.41 + 1.17(11)$	$-21.39 + 1.35$			
YAlO ₃	9.24 ± 1.72 (7)	$-23.62 + 1.83$			
			$Sm_3Ga_5O_{12}$	$118.99 + 3.86(6)$	-146.99 ± 7.83
			$Eu3Ga5O12$	126.61 ± 3.41 (4)	$-138.11 + 4.90$
			$Gd_3Ga_5O_{12}$	129.26 ± 3.53 (4)	$-147.06 + 6.86$
$Dy_3Al_5O_{12}$	$103.66 + 2.53(13)$	$-97.67 + 3.43$	$Dy_3Ga_5O_{12}$	134.71 ± 3.30 (6)	$-119.96 + 4.76$
$Y_3Al_5O_{12}$	$105.23 \pm 3.33(6)$	$-115.44 + 4.00$	$Y_3Ga_5O_{12}$	132.10 ± 2.34 (4)	-133.55 ± 4.09
$Ho3Al5O12$	$108.50 + 5.32(6)$	$-101.46 + 10.05$	$Ho_3Ga_5O_{12}$	$142.38 + 3.13(8)$	$-126.58 + 9.43$
$Er3Al5O12$	$107.60 \pm 7.10(6)$	$-96.66 + 7.69$	$Er3Ga5O12$	138.68 ± 8.54 (4)	$-118.98 + 9.38$
$Tm_3Al_5O_{12}$	108.89 ± 1.79 (5)	-97.20 ± 4.80	$Tm_3Ga_5O_{12}$	$129.27 + 6.25(4)$	$-108.82 + 8.08$
$Yb_3Al_5O_{12}$	$104.12 + 3.56(7)$	$-81.03 + 4.79$	$Yb_3Ga_5O_{12}$	$126.41 + 4.41(5)$	$-94.56 + 6.01$
$Lu_3Al_5O_{12}$	$103.82 + 4.78(10)$	$-73.08 + 5.31$	$Lu_3Ga_5O_{12}$	$125.53 \pm 3.17(8)$	$-86.03 + 4.67$
Compound	ΔH_s (kJ mol ⁻¹)	Compound	ΔH_s (kJ mol ⁻¹)	Compound	ΔH_s (kJ mol ⁻¹)
α -Al ₂ O ₃	32.94 ± 0.59 (9)	$B-Sm2O3$	-79.4 ± 4.1	$C-Ho2O3$	-50.2 ± 5.6
β -Ga ₂ O ₃	$36.44 \pm 1.17(6)$	B -Eu ₂ O ₃	$-68.4 + 1.3$	$C-Er2O3$	$-47.6 + 1.7$
SiO ₂ (quartz)	$-4.18 + 0.10(8)$	$C-Gd2O3$	$-72.6 + 3.4$	$C-Tm2O3$	$-47.1 + 2.8$
$A-La2O3$	$-126.0 + 4.4$	$C-Dy2O3$	$-50.9 + 1.2$	$C-Yb2O3$	-39.5 ± 1.9
$A-Nd_2O_3$	$-85.1 + 3.7$	$C-Y_2O_3$	$-61.7 + 1.1$	$C-Lu2O3$	$-34.4 + 1.2$

" ΔH_f for perovskites: $\frac{1}{2}Ln_2O_3 + \frac{1}{2}Fe_2O_3 = LnFeO_3$. ΔH_f for garnets: $\frac{3}{2}Ln_2O_3 + \frac{5}{2}Fe_2O_3 = Ln_3Fe_5O_{12}$. The errors are two standard deviations of the mean. The numbers in parentheses are the numbers of experiments. Data for Ln_2O_3 are from Ref. (34).

FIG. 1. $\Delta H_s(Ln \text{AlO}_3)$ (O) and $\frac{1}{2} \Delta H_s(Ln_3 \text{Al}_5\text{O}_{12}) + \frac{1}{2} \Delta H_s(Ln_2 \text{O}_3)$ (A) as functions of reciprocal ionic radius of Ln^{3+} , r^{-1} . The $\Delta H_s(Ln_2O_3)$ were taken from [Ref.](#page-11-0) [\(34\).](#page-11-0)

corresponding data for the Ga system are plotted in Figs. 1 and 2, respectively, as functions of inverse ionic radius [\(35\)](#page-11-0) of eight-coordinated Ln^{3+} , r^{-1} . The data $\frac{1}{5}\Delta H_s(Ln_3)$ of eight-coordinated Ln^{3+} , r^{-1} . The data $\frac{1}{5}\Delta H_s(Ln_3Ga_5$
O₁₂) + $\frac{1}{5}\Delta H_s(Ln_2O_3)$ in Fig. 2 are fitted as a parabolic function of r^{-1} . The other three sets of data in Figs. 1 and 2 are fitted as linear functions of r^{-1} . $\Delta H_s(Ln_3Al_5O_{12})$ and $3\Delta H_s(LnAIO_3) + \Delta H_s(\alpha AI_2O_3)$ are plotted against r^{-1} in Fig. 3. They are fitted as parabolic functions of r^{-1} and shown as solid lines in Fig. 3. A dashed line in Fig. 3 is the tangent of $\Delta H_s (Ln_3 \text{Al}_5 \text{O}_{12})$ at $Ln = \text{Dy. }\Delta H_s (Ln_3 \text{Ga}_5 \text{O}_{12})$ and $3\Delta H_s (LnGaO_3) + \Delta H_s (\beta-Ga_2O_3)$ are plotted against r^{-1} in Fig. 4 and are fitted as parabolic and linear functions of r^{-1} , respectively. A dashed line with positive slope in Fig. 4 is the tangent of $\Delta H_s(Ln_3Ga_5O_{12})$ at $Ln = Sm$.

FIG. 3. $3 \Delta H_s(LnAIO_3) + \Delta H_s(\alpha-AI_2O_3)$ (\bullet) and $\Delta H_s(Ln_3Al_5O_{12})$ (\triangle) as functions of r^{-1} .

DISCUSSION

ΔH and $T\Delta S$ Terms for Reaction [4]

 $\Delta H_s(LnAIO_3)$ becomes less positive as r^{-1} increases and becomes negative relative to $\frac{1}{5}\Delta H_s(Ln_3Al_5O_{12}) + \frac{1}{5}$ becomes negative relative to $\frac{1}{5}\Delta H_s(Ln_3Al_5O_{12}) + \frac{1}{5}\Delta H_s(Ln_2O_3)$ if r^{-1} is larger than that of Dy³⁺ or Y³⁺ (Fig. 1). This means that $LnAIO₃$ perovskites become less stable with increasing r^{-1} at 977 K and that $LnAIO_3$ ($Ln = La-$ Dy, Y) perovskites withstand disproportionation [4] to garnet plus sesquioxide at 977 K, whereas *LnAlO₃* (*Ln* = Ho–Lu) perovskites do not. This is consistent with the fact that $LnAIO_3$ ($Ln = La-Dy$, Y) perovskites can be prepared at ambient pressure [\(Table](#page-1-0) [1\)](#page-1-0) whereas high pressure is necessary to obtain $LnAIO₃$ ($Ln = Ho-Lu$) perov-skites [\(17\)](#page-11-0). The $T\Delta S$ term as well as the ΔH term controls reaction [4] at a given pressure; however, the ΔH term alone is enough to explain the above-mentioned fact. The stability

FIG. 2. $\Delta H_s(LnGaO_3)$ (O) and $\frac{1}{5}\Delta H_s(Ln_3Ga_5O_{12}) + \frac{1}{5}\Delta H_s(Ln_2O_3)$ (\triangle) as functions of r^{-1} .

FIG. 4. $3 \Delta H_s (Ln \text{GaO}_3) + \Delta H_s (\beta - \text{Ga}_2 \text{O}_3)$ (\bullet) and $\Delta H_s (Ln_3 \text{Ga}_5 \text{O}_{12})$ (\triangle) as functions of r^{-1} .

of LnAlO₃ against reaction [4] is controlled by the ΔH term rather than by the $T\Delta S$ term. The stability of $Ln AIO₃$ is controlled by reaction [5] rather than by [4]. The value of $\frac{1}{7}\Delta H_s (Ln_3 Al_5O_{12}) + \frac{1}{7}\Delta H_s (Ln_4Al_2O_9)$ should be between $\Delta H_s(Ln\text{AlO}_3)$ and $\frac{1}{2}\Delta H_s(Ln_3\text{Al}_5\text{O}_{12}) +$ $\frac{1}{5}\Delta H_{\rm s}(Ln_2O_3)$.

A similar conclusion holds for the stability of $LnGaO₃$ against reaction [4]. $\Delta H_s(LnGaO_3)$ becomes less positive with increasing r^{-1} and is more negative than $\frac{1}{5}\Delta H_s$ $(Ln_3Ga_5O_{12}) + \frac{1}{5}\Delta H_s(Ln_2O_3)$ if r^{-1} is larger than that of Nd^{3+} (Fig. 2). This is consistent with the fact that $LnGaO_3$ $(Ln = La-Nd)$ perovskites can be prepared at ambient pressure (Table 1) whereas high pressure is necessary to obtain $LnGaO₃$ (Ln = Sm-Lu, Y) perovskites (18, 19). Hence, the ΔH term alone is enough to explain the above fact. The stability of $LnGaO_3$ against reaction [4] is controlled by the ΔH term rather than by the T ΔS term.

 ΔS should be determined experimentally to confirm the foregoing discussion quantitatively. ΔS can be determined, for example, by measuring specific heats of the perovskites, garnets, Ln_2O_3 phases, and M_2O_3 phases. Corresponding data for Ln_2O_3 and M_2O_3 phases are compiled in Ref. 22. At least, the present work indicates qualitatively that the stability of the perovskites against reaction [4] is controlled by the ΔH term rather than by the T ΔS term.

$P\Delta V$ Terms for Reaction [4]

 $Ln₂O₃$ phases crystallize in A-type ($Ln = La-Nd$), B-type $(Ln = Sm, Eu)$, and C-type $(Ln = Gd-Lu, Y)$ structures at ambient pressure. The molar volume of Ln_2O_3 increases upon transitions from A to B type and from B to C type (Table 5). Therefore, Ln_2O_3 has a tendency to transform from C to B type and from B to A type under pressure. $C-Ln_2O_3$ (Ln = Gd–Lu, Y) phases transform to B type at 2.5–4.0 MPa and at 1178–1293 K. B-Ln₂O₃ (Ln = Gd–Lu,

Y) phases are quenchable to ambient pressure and room temperature (36). B-Sm₂O₃ transforms to A type at 3 GPa and at room temperature, but $A-Sm₂O₃$ reverts to B type when pressure is released (37) .

Here we discuss the P ΔV terms for reaction [4]. ΔH and ΔV values for reaction [4] are shown in Table 6. ΔH data at 977 K are obtained from the fitted lines in Figs. 1 and 2. ΔV values are derived from the values shown in Table 5 and are assumed to be independent of pressure. Figures 5 and 6 show the pressure dependence of ΔG at 977 K for the reactions $LnAlO_3 = \frac{1}{5}Ln_3Al_5O_{12} + \frac{1}{5}Ln_2O_3$ and $LnGaO_3$ $=\frac{1}{5}Ln_3Ga_5O_{12} + \frac{1}{5}Ln_2O_3$, respectively. The enthalpies of transitions among A-, B-, and $C-Ln_2O_3$ are expected to be small (34), for example, about 3 kJ mol⁻¹ for B to C in Sm_2O_3 (22). The magnitude, 3 kJ mol⁻¹, does not seem to seriously affect the energetics of reaction [4]. Without detailed study for other systems, the enthalpies of transitions are neglected in this discussion. Figure 5 indicates that all of the LnAlO₃ perovskites (Ln = Ho-Lu), which cannot be synthesized by conventional solid-state reactions at ambient pressure, are stable against reaction [4] at 977 K if a pressure of 1.3–1.4 GPa or higher is applied. $Ln₂O₃$ oxides $(Ln = Dy-Lu, Y)$ below 1.4 GPa and at 977 K should be C type (36). This is consistent with the result of Dernier et al. (17). They synthesized $LnAD_3$ perovskites $(Ln = Ho-Lu)$ at 3.25 GPa and 1473 \pm 10 K (17). Figure 6 shows that all of the LnGaO₃ perovskites ($Ln = Sm-Lu, Y$), which cannot be obtained by solid-state reactions at ambient pressure, are stable against reaction [4] at 977 K if a pressure of about 4.6–5.6 GPa or higher is applied. Specifically, about 1 GPa is enough to prevent reaction [4] at 977 K for $SmGaO₃$. $Sm₂O₃$ at around 1 GPa and at 977 K maintains the B form (37). Ln_2O_3 ($Ln = Eu-Lu$, Y) phases at around 5–6 GPa and at 977 K crystallize in B or C type (36) , This is consistent with the result of Marezio et al. (18, 19). They synthesized $LnGaO_3$ perovskites ($Ln = Sm-Lu$, Y) at 7 GPa

TABLE 5 Volume per Unit Formula (\AA ³ (unit formula)⁻¹) for Oxides^{*a*}

Ln	$A-Ln_2O_3$	$B-Ln_2O_3$	$C-Ln_2O_3$	LnAlO ₃	$Ln_3Al_5O_{12}$	LnGaO ₃	$Ln_3Ga_5O_{12}$
La	82.300245		90.829048	54.465560		58.725919	
Nd	76.207445		85.015749	52.8028 ⁶¹		57.564919	244.492467
Sm		74.799646	81.542350	52.3041 ⁶¹		56.6805 ¹⁹	240.177968
Eu		73.433845	80.235251	51.995817		56.409719	238.385769
Gd		72.072247	79.016752	51.822717	222.159639	56.033219	237.343470
Dy		69.885045	75.816353	51.1690^{17}	217.786963	55.2166 ¹⁹	233 005771
Y		68.300545	74.522854	50.8510 ⁶²	216.0000 ³⁹	54.8078 ¹⁸	231.475539
Ho		68.455845	74.653655	50.8416^{17}	216,0000 ⁶⁴	54.7175 ¹⁹	231.532172
Er		67.545645	73.348456	50.530817	213.954565	54.451719	230.064773
Tm		66.410945	72.103857	50.2400^{17}	213.686366	54.055419	228.547474
Yb		65.202145	71.036658	49.962217	212.295439	53.733419	227.204339
Lu		64.557745	70.101459	49.6365^{17}	210.963739	53.4356 ¹⁹	226.311939
	α -Al ₂ O ₃	42.420775	α -Ga ₂ O ₃	48.133576	β -Ga ₂ O ₃	52.376177	

"Superscripts show reference numbers.

Perovskite	ΔΗ $(kJ \text{ mol}^{-1})$	$\Delta V(A)$ $\rm (cm^3 \, mol^{-1})$	$\Delta V(\textbf{B})$ $\rm (cm^3 \, mol^{-1})$	$\Delta V(C)$ $(cm3 mol-1)$
DyAIO ₃	-1.271		3.8333	4.5477
YAlO ₃	-0.264		3.6187	4.3682
HoAlO ₃	0.245		3.6429	4.3894
ErAIO ₃	1.667		3.4742	4.1730
TmAlO ₃	2.987		3.4804	4.1661
YbAIO ₃	4.198		3.3347	4.0375
LuAlO ₃	5.293		3.2932	3.9608
NdGaO ₃	-2.870	3.9594		5.0204
SmGaO ₃	4.016		3.8027	4.6148
EuGaO ₃	6.619		3.5856	4.4047
GdGaO ₃	8.962		3.5230	4.3594
DyGaO ₃	12.780		3.2286	3.9429
YGaO ₃	13.698		3.0997	3.8492
HoGaO ₃	14.108		3.1795	3.9260
ErGaO ₃	15.060		3.0533	3.7522
TmGaO ₃	15.688		2.9729	3.6586
YbGaO ₃	16.049		2.8594	3.5622
LuGaO ₃	16.198		2.8533	3.5209
	ΔH	ΔS	$\Delta V(\alpha)$	$\Delta V(\beta)$
Garnet	$(kJ \text{ mol}^{-1})$	$(J K^{-1} mol^{-1})$	$\rm (cm^3 \, mol^{-1})$	$\rm (cm^3 \, mol^{-1})$
$La3Al5O12$	-21.226	14.21		
$Nd3Al5O12$	-2.198	14.21		
$Sm3Al5O12$	10.978	14.21		
$Eu3Al5O12$	17.208	14.21		
$Gd_3Al_5O_{12}$	23.779	14.21	-14.6157	
$Dy_3Al_5O_{12}$	38.383	14.21	-13.1638	
$Y_3Al_5O_{12}$	42.623	14.21	-12.6621	
$Ho3Al5O12$	44.450	14.21	-12.6784	
$Er3Al5O12$	48.417	14.21	-12.0081	
$Tm3Al5O12$	50.608	14.21	-12.3725	
$Yb_3Al_5O_{12}$	51.355	14.21	-12.0370	
$Lu_3Al_5O_{12}$	50.990	14.21	-11.8245	
$La_3Ga_5O_{12}$				
$Nd_3Ga_5O_{12}$	50.655		-14.2508	-11.6956
$Sm_3Ga_5O_{12}$	69.636		-13.2499	-10.6947
$Eu3Ga5O12$	77.378		-12.6603	-10.1051
$Gd_3Ga_5O_{12}$	83.626		-12.7133	-10.1581
$Dy_3Ga_5O_{12}$	91.155		-11.5758	-9.0206
$Y_3Ga_5O_{12}$	92.009		-11.3933	-8.8381
H_0 ₃ Ga ₅ O ₁₂	92.158		-11.5896	— 9.0344
$Er3Ga5O12$	91.569		– 11.1867	-8.6315
$Tm_3Ga_5O_{12}$	89.697		-10.9898	-8.4346
$Yb_3Ga_5O_{12}$	86.857		-10.7628	-8.2076
$Lu_3Ga_5O_{12}$	83.364		-10.7622	-8.2070

TABLE 6 ΔH^a at 977 K, ΔS^b , and ΔV of Disproportionation of Perovskites and Garnets^c

 \textdegree Derived from the fitting lines shown in Figs. 1-4.

 b See text.</sup>

^c Perovskites: $LnMO_3 = \frac{1}{5}Ln_3M_5O_{12} + \frac{1}{5}(A_5, B_5, or C_-)Ln_2O_3$. Garnets: $Ln_3M_5O_{12} = 3LnMO_3 + (\alpha - \text{or }\beta -)M_2O_3.$

and 1273 K or at 4.5 GPa and 1273 K. The disproportionation reaction [4] is controlled almost by the ΔH and $P\Delta V$ terms. Contribution of the $T\Delta S$ term to reaction [4] is small.

FIG. 5. ΔG versus pressure at 977 K for the reaction $LnAO_3$ = $\frac{1}{5}Ln_3Al_5O_{12} + \frac{1}{5}C\text{-}Ln_2O_3.$

ΔH and T ΔS Terms for Reaction [6]

If we try to prepare $Ln₃Al₅O₁₂$ from a stoichiometric mixture of monoxides by conventional methods at ambient pressure, the product is $Ln_3Al_5O_{12}$ garnet for $Ln = Dy-Lu$ and Y and is a $3LnAIO₃ + \alpha-Al₂O₃$ mixture for the others (Table 1). The enthalpy data shown in Fig. 5 are, at a glance, in conflict with the data given in Table 1. Figure 5 indicates that not only $Ln_3Al_5O_{12}$ ($Ln = Dy-Lu$, Y) but also $Eu₃Al₅O₁₂$ and $Gd₃Al₅O₁₂$ garnets are stable against the disproportionation reaction [6] at 977 K. The entropy term explains why $Ln_3Al_5O_{12}$ ($Ln = Eu$, Gd) cannot be prepared by conventional solid-state reaction. The garnets $(Ln =$ Dy-Lu, Y) are stable at 1873 K. Indeed, our garnet specimens $(Ln = Dy-Lu)$ are prepared at 1873 K and the Y₃Al₅O₁₂ one at 1973 K. On the other hand, Gd₃Al₅O₁₂ was synthesized by heating a stoichiometric, amorphous

FIG. 6. ΔG versus pressure at 977 K for the reactions NdGaO₃ = $\frac{1}{5}Nd_3Ga_5O_{12} + \frac{1}{5}A\text{-Nd}_2O_3$ (dotted line), $LnGaO_3 = \frac{1}{5}Ln_3Ga_5O_{12} + \frac{1}{5}B$ Ln_2O_3 (dashed lines), and $LnGaO_3 = \frac{1}{5}Ln_3Ga_5O_{12} + \frac{1}{5}C-Ln_2O_3$ (solid lines).

sample at 1573 K for 1 h in air followed by rapid quenching [\(15\)](#page-11-0). $Gd_3Al_5O_{12}$ decomposed into $3GdAlO_3 + \alpha Al_2$ (15). $Gd_3Al_5O_{12}$ decomposed into 3GdAlO₃ + α -Al₂O₃ after being maintained at 1773 K for 24 h in air. $Gd_3Al_5O_{12}$ is a low-temperature state and the mixture 3GdAlO₃ + α is a low-temperature state and the mixture $3GdAIO_3 + \alpha$ Al_2O_3 is a high-temperature state. The difference between $\Delta H_s(Ln_3A_1S_1O_{12})$ and $3\Delta H_s(LnA1O_3) + \Delta H_s(\alpha-A1_2O_3)$ in [Fig. 3](#page-4-0) is attributable to the $T\Delta S$ term. The stability of $Ln_3Al_5O_{12}$ against reaction [6] is controlled by the $T\Delta S$ term as well as by the ΔH term.

According to [Shishido](#page-11-0) *et al.* (15), ΔG for reaction [6] with $Ln = Gd$ and $M = Al$ is zero at a temperature between 1573 and 1773 K. Here we assume that ΔG is zero at 1673 K. ΔH for reaction [6] with $Ln = Gd$ and $M = Al$ is estimated to be 2[3.](#page-4-0)78 kJ mol^{-1} by extrapolation lines shown in [Fig.](#page-4-0) 3. Consequently, $\Delta S^{1673 \text{ K}}$ for reaction [6] with $Ln = Gd$ and $M =$ Al is 14.21 J K^{-1} mol^{-1}. If we further assume that the ΔS term is independent of both temperature and Δn element, we can calculate the ΔG values as functions of temperature (Fig. 7). The equilibrium temperatures, T_{eq} , for [Eq.](#page-1-0) [\[6\]](#page-1-0) are calculated to be 3000 ($Ln = Y$), 2701 ($Ln = Dy$), 1673 $(Ln = Gd)$, 1211 $(Ln = Eu)$, 773 $(Ln = Sm)$, and -155 K $(Ln = Nd)$. It is, thus, predicted that $Eu₃Al₅O₁₂$ and $\text{Sm}_3\text{Al}_5\text{O}_{12}$ can be obtained if synthetic temperatures are decreased, as in the case with $Gd_3Al_5O_{12}$.

The corresponding Ga system shows a similar tendency. If we try to prepare $Ln_3Ga_5O_{12}$ from a stoichiometric mixture of monoxides at ambient pressure, the product is $Ln_3Ga_5O_{12}$ garnet for $Ln = Nd-Lu$ and Y and is $3LnGa$ $O_3 + \beta$ -Ga₂ O_3 for the others [\(Table](#page-1-0) [1\)](#page-1-0). The corresponding synthesis for LnGaO₃ results in $\frac{1}{7}Ln_3M_5O_{12} + \frac{1}{7}Ln_4M_2$ synthesis for LnGaO₃ results in $\frac{1}{7} L n_3 M_5 O_{12} + \frac{1}{7} L n_4 M_2 O_9$
(*Ln* = Sm-Gd) [\(10\)](#page-11-0) or $\frac{1}{5} L n_3 M_5 O_{12} + \frac{1}{5} L n_2 O_3$ (*Ln* = Tb-Lu). On the other hand, [Geller](#page-11-0) *et al.* (16) prepared $LnGaO₃$ perovskites ($Ln = Sm$ —Er) by quenching molten mixtures of Ln_2O_3 and Ga_2O_3 . The molten state was kept at approximately 1923 K for $SmGaO₃$ and approximately 2273 K for ErGaO₃ for about 10 min and then quenched. The $LnGaO₃$ perovskites were obtained as a single phase except for H oGaO₃ and ErGaO₃. These results suggest that Ln_3Ga_5
O₁₂ garnets are the lower temperature states and the corresponding mixtures, $3LnGaO₃ + \beta-Ga₂O₃$, are the higher temperature states. Indeed, there also is a difference between $\Delta H_s(Ln_3Ga_5O_{12})$ and $3 \Delta H_s(LnGaO_3) + \Delta H_s(\beta-Ga_2O_3)$ in [Fig.](#page-4-0) [4](#page-4-0). [Figure](#page-4-0) 4 predicts that $Ln_3Ga_5O_{12}$ garnets with $Ln = La-Pr$ would also be stable against reaction [6] at 977 K or below. The stability of $Ln_3Ga_5O_{12}$ against reaction [6] is controlled by the $T\Delta S$ term as well as by the ΔH term.

P^{ΔV} *Terms for Reaction* [*6*]

Here we discuss the *P* ΔV terms for reaction [6]. ΔH , ΔS , and ΔV values for reaction [4] are shown in [Table](#page-6-0) [6.](#page-6-0) ΔH data at 977 K are obtained from the fitted lines in [Figs.](#page-4-0) [3](#page-4-0) and [4.](#page-4-0) ΔS values are estimated by the above discussion. ΔV values are derived from the values shown in [Table](#page-5-0) [5](#page-5-0) and are assumed to be independent of pressure. Figures 8 and [9](#page-8-0) show the pressure dependence of ΔG at 977 K for the reactions $Ln_3Al_5O_{12} = 3LnAlO_3 + Al_2O_3$ and Ln_3Ga_5
 $O_{12} = 3LnGaO_3 + Ga_2O_3$, respectively. Ambient-pressure + Ga_2O_3 , respectively. Ambient-pressure phase β -Ga₂O₃ transforms to corundum-type α -Ga₂O₃ at 4.4 GPa and 1273 K [\(38\)](#page-11-0). The enthalpy of transition between α - and β -Ga₂O₃ phases should be studied to analyze the $P\Delta V$ terms for reaction [6]. However, the enthalpy of transition is neglected in this discussion in analogy to the enthalpy of transition among A_7 , B_7 , and $C_7Ln_2O_3$. Figures 8 and [9](#page-8-0) indicate that, even if the $T\Delta S$ term is disregarded, none of the $Ln_3M_5O_{12}$ phases is thermodynamically stable against the disproportionation [6] at pressures of about 4.3 GPa or higher $(M = Al)$ or about 8.2 GPa or higher $(M = Ga)$, respectively.

FIG. 7. ΔG versus temperature for the reaction $Ln_3Al_5O_{12} =$ $3LnAlO₃ + \alpha-Al₂O₃$.

FIG. 8. ΔG versus pressure at 977 K for the reaction $Ln_3Al_5O_{12} =$ 3 *Ln*AlO₃ + α -Al₂O₃.

FIG. 9. ΔG versus pressure at 977 K for the reactions $Ln_3Ga_5O_{12} =$ $3LnGaO₃ + \alpha$ -Ga₂O₃ (solid lines) and Nd₃Ga₅O₁₂ = $3NdGaO₃ + \beta$ - $Ga₂O₃$ (dashed line).

Factors Controlling the ΔH_s *of Perovskites and Garnets*

In both $LnMO_3$ perovskites and $Ln_3M_5O_{12}$ garnets, *Ln*–O distances change depending on *Ln* but *M*–O distances are almost independent of $Ln(14, 39)$ $Ln(14, 39)$ $Ln(14, 39)$ $Ln(14, 39)$. In $LnMO₃$ perovskites, the twelve $Ln-O$ distances can be approximately classified into two types, eight shorter and four longer. The twelve O and Ln atoms form face centered cubic type close-packed layers, if distortion is disregarded. The eight O atoms with shorter bond lengths coordinate to the Ln atom in a distorted bicapped trigonal prism. Energetic terms might scale with a potential term, r^{-1} , but bond lengths vary directly with ionic radius. The difference between the mean $Ln-O$ distance of the shorter eight and that of the longer four increases with increasing r^{-1} (Table 7, [Fig. 10\)](#page-9-0) [\(14\)](#page-11-0). Consequently, the distortion of the *Ln* coordination polyhedra increases markedly with increasing r^{-1} [\(14\)](#page-11-0). In $Ln_3M_5O_{12}$ garnets, *Ln* atoms are coordinated by eight O atoms in a distorted CsCl-type coordination [\(Fig.](#page-9-0) [11\)](#page-9-0). The eight $Ln-O$ distances consist of two types, four shorter and four longer, though the eight O atoms are crystallographically equivalent. Both types of $Ln-O$ distances decrease with increasing r^{-1} (Table 7, [Fig.](#page-9-0) [10\)](#page-9-0) [\(39\)](#page-11-0). Therefore, the distortion of the *Ln* coordination polyhedra in the garnets does not change as a function of r^{-1} , but the corresponding distortion in the perovskites does.

 $\Delta H_s(LnMO_3)$ decreases linearly with increasing r^{-1} in both the Al and Ga systems [\(Figs.](#page-4-0) [1](#page-4-0) and [2\)](#page-4-0). The $\Delta H_s(Ln)$ both the At and Oa systems (Figs. 1 and 2). The ΔH_s (M_5O_{12}) versus r^{-1} curves are concave upward and show positive peaks at around $Ln = Er$ for the Al system and at around $Ln = Y$ for the Ga system [\(Figs.](#page-4-0) [3](#page-4-0) and [4\)](#page-4-0). The slope for $\Delta H_s(LnMO_3)$ versus r^{-1} is larger than both positive and negative slopes for $\Delta H_s(Ln_3M_5O_{12})$ versus r^{-1} , if the slopes are normalized per mole of oxygen atom. These features reflect the extent of the distortion of the Ln coordination polyhedra. The distortion is large in perovskites and small

TABLE 7 Mean *Ln*-O Distances (A) in Perovskites and Garnets^{*a*}

2.660^{61} 2.6575^{61} 2.655282	LnAlO ₃ 2.591561 2.4995 ⁶¹ 2.4011^{82}	2.79761 2.973561 3.163382	$Ln3Al5O12$ 2.33539 2.303^{39} 2.29865 2.28339 2.27639	2.45839 2.43239 2.42865 2.39739 2.38339
	LnGaO ₃		$Ln_3Ga_5O_{12}$	
2.756483	2.464683	3.34083	2.35970 2.36481 2.33839 2.30239 2.30339	2.47370 2.455^{81} 2.42839 2.40739 2.39339
	LnFeO ₃		$Ln_3Fe_5O_{12}$	
2.798284 2.789914 2.789814	2.604984 2.5446^{14} 2.5266^{14}	3.1848 ⁸⁴ 3.280514 3.316014		
2.783314 2.782014	2.478814 2.467514	3.392514 3.4110^{14}	2.3878	2.48939 2.4778 2.46279
2.772714 2.771085 2.7681^{14}	2.441514 2.430885 2.430614	3.435014 3.451585 3.443014	2.360^{39} 2.35780	2.43939 2.436^{80}
2.763614 2.758714	2.4140^{14} 2.402314 2.395314	3.462814 3.471514 3.473814	2.33539 2.31939	2.41739 2.38539 2.38539
	2.785314 2.7756^{14} 2.7657 ¹⁴ 2.754814	2.492914 2.453514 2.421014	3.370014 3.419814 3.4550^{14}	2.39439 2.36879 2.32639

a Superscripts show reference numbers.

in garnets. The positive peaks of $\Delta H_s (Ln_3 M_5 O_{12})$ indicate In garnets. The positive peaks of ΔH_s ΔH_s ΔH_s ΔH_s multiple that there is an optimum ionic radius of Ln^3 ⁺ for Al and Ga garnets. The eight O atoms surrounding a Ln^{3+} form a distorted cube. Among the twelve edges of the cube, four are shared by another *LnO* polyhedron, four by *MO* octahedra, and two by *M*O tetrahedra. The location of the three types of shared edges shows a C_2 rotation axis [\(Fig.](#page-9-0) [11\)](#page-9-0). There should be strong interaction among the lengths of the three types of edges. Consequently, there should be an optimum size of Ln^{3+} to share the edges with *MO* octahedra, *MO* tetrahedra, and *LnO* polyhedra. This probably causes the positive peaks of $\Delta H_s(Ln_3M_5O_{12})$. Indeed, Al^{3+} is smaller positive peaks of $\Delta H_s(Ln_3M_5O_{12})$, indeed, ΔH_s is smaller for Al garnet than Ga³⁺, and the optimum Ln^{3+} is smaller for Al garnet (Er^{3+}) (Er^{3+}) (Er^{3+}) and larger for Ga garnet (Y^{3+}) [\(Figs.](#page-4-0) 3 and [4\)](#page-4-0). A similar discussion has been applied to the Fe garnets by [Kimizuka](#page-11-0) *et al*. (21). Their calculation of Madelung energies indicated that Tb^{3+} has the optimum radius in the Fe

FIG. 10. Mean *Ln*-O distances as functions of *r*. Closed circles and closed triangles indicate the shorter $Ln-O$ and the longer $Ln-O$ distances in garnets, respectively. Open circles, open triangles, and open squares show the mean $Ln-O$ distance of the longer four $Ln-O$ distances, the mean *Ln*–O distance of the shorter eight *Ln*–O distances, and the mean *Ln*–O distance of the twelve *Ln*–O distances in perovskites, respectively. Upper, middle, and lower figures represent Fe, Ga, and Al systems, respectively.

garnets [\(21\)](#page-11-0). Fe³⁺ and Tb³⁺ are larger than Ga³⁺ and Y³⁺ respectively [\(35\)](#page-11-0). From this point of view, the calculation of Kimizuka *et al.* and our results are consistent. The ΔH_s of the perovskites and the garnets is controlled mainly by the distortion of the *LnO* polyhedra.

Reaction [6] shows positive ΔS and negative ΔV ; therefore, the boundary between $Ln_3M_5O_{12}$ and $3LnMO_3 +$ M_2O_3 has a negative slope in the *P-T* diagram (Fig. 12). *Ln* cations are eight-coordinated, two-fifths of *M* cations are six-coordinated, and the other *M* ions are four-coordinated in $Ln_3M_5O_{12}$. In $LnMO_3$, the Ln cations are between twelve- and eight-coordinated, depending on the distortion, and the *M* cations are six-coordinated. The *M* cations in α - M_2 O₃ are six-coordinated. In β -Ga₂O₃, half the Ga cations are six-coordinated and the other half, four coordinated. Consequently, the mean coordination numbers of both Ln^{3+} and M^{3+} increase by the disproportionation reaction [6]. The reaction also elongates both the mean ¸*n—*O distance and the mean *M—*O distance. The mean Ln –O distance of the shorter eight Ln –O bonds in $LnMO_3$ is almost equal to the longer Ln –O distance in $Ln_3M_5O_{12}$ is almost equal to the longer $Ln-O$ distance in $Ln₃M₅O₁₂$
and is shorter than the shorter $Ln-O$ distance in $Ln₃M₅O₁₂$ (Fig. 10). Therefore, the mean $Ln-O$ distance increases in reaction [6] even if the coordination number of Ln^{3+} in $LnMO₃$ is regarded as eight. Both the increase in coordination number and elongation in bond distance result in a positive ΔS [\(40,](#page-11-0) [41\)](#page-11-0). The perovskite-forming reactions have a negative ΔV , despite an increase in local coordination number and bond length. More efficient overall packing decreases the volume. Though the decrease in volume would tend to decrease the entropy, the weaker $Ln-O$ bonds result in an increase in entropy which more than compensates, and the overall ΔS of perovskite-forming reac-tions are generally positive [\(40\)](#page-11-0) as has been seen for CdTiO₃ and CdSnO₃ perovskites [\(42\)](#page-11-0) and for MgSiO₃ perovskite [\(43\)](#page-11-0). An analogous tendency has been reported for molten states of aluminosilicates [\(44\)](#page-11-0). The viscosity of aluminosilicate melts decreases with increasing pressure, which is accompanied by both an increasing coordination number of

FIG. 11. Schematic illustration of the distorted CsCl-type coordination of Ln^{3+} in garnets. O atoms are located at the corners and the Ln^{3+} in the center of the distorted cube. Solid, dashed, and dotted lines indicate the shared edges with another *LnO* coordination polyhedron, *MO* octahedra, and *M*O tetrahedra, respectively.

FIG. 12. $P-T$ boundaries between $Ln_3Al_5O_{12}$ (lower left) and $3 LnAIO₃ + \alpha-AI₂O₃$ (upper right).

Al and a weakening of the Al*—*O bond strength. Negative ΔV values for reaction [6] are achieved by not only an increase in coordination number but also an *increase* in bond distance. This causes the negative slope in the *P-T* diagram.

Formation Reactions [*2*] *and* [*3*]

Enthalpies of formation (ΔH_f) of perovskites and garnets from monoxides are shown as functions of r^{-1} in Fig. 13 for the Al system and in Fig. 14 for the Ga system, respectively. ΔH_f values of both Al and Ga perovskites become more negative with increasing r^{-1} . This tendency reflects both the negative slope for $\Delta H_s(LnMO_3)$ versus r^{-1} and the positive slope for $\Delta H_s(Ln_2O_3)$ versus r^{-1} . The negative slope for the former was discussed earlier. The positive slope for the latter is caused by the strengthening of the ionic bond by shortening of the $Ln-O$ distance from $Ln = La$ to $Ln = Lu$. Corresponding strengthening occurs in the shorter eight $Ln-O$ bonds in *LnMO*₃. However, the strengthening is overcome by the weakening of the ionic bond between *Ln* and the distant four O atoms. The distances between Ln and the more distant four O atoms increase with increasing r^{-1} , as described earlier.

The *f* orbitals in La³⁺ and Y^{3+} are vacant and those of Gd^{3+} are half-filled; therefore, the three Ln^{3+} are free from any crystal field stabilization but the other Ln^{3+} are not. The dashed line in Fig. 13 is fitted for the three $LnAO_3$ ($Ln = La$, Gd, Y). The positive deviation from the line for the remaining *LnAlO*₃ perovskites may reflect the crystal field stabilization of Ln^{3+} in Ln_2O_3 [\(34\)](#page-11-0).

 ΔH_f values of $Ln_3Al_5O_{12}$ ($Ln = Dy-Er$, Y) and Ln_3 Ga_5O_{12} (*Ln* = Sm–Gd) are almost constant and become
 Ga_5O_{12} (*Ln* = Sm–Gd) are almost constant and become less negative with decreasing ionic radius of Ln^{3+} (Figs. 13) and 14). This tendency reflects both the positive peaks in

FIG. 13. $\Delta H_f(LnAIO_3)$ (O) and $\Delta H_f(Ln_3Al_5O_{12})$ (Δ) as functions of r^{-1} . The dashed line is fitted for the three $\Delta H_f(LnAIO_3)$ values with $Ln = La$, Gd, and Y.

FIG. 14. $\Delta H_f(LnGaO_3)$ (O) and $\Delta H_f(Ln_3Ga_5O_{12})$ (\triangle) as functions of r^{-1} .

 $\Delta H_s(Ln_3M_5O_{12})$ versus r^{-1} and the positive slope for $\frac{3M}{2}$ $\Delta H_s (Ln_2 O_3)$ versus r^{-1} , as already discussed. $\Delta H_s (Ln_3 M_5 O_{12})$ versus r^{-1} curves are concave downward, slightly, in both Al and Ga systems. This suggests that the formation reaction [3] is influenced by the deviation of the ionic radius of Ln^{3+} from the optimum size for the garnet structure rather than the crystal field stabilization of Ln^{3+} in Ln_2O_3 .

Finally, we discuss the ΔS of the formation reactions [2] and [3]. In both Al and Ga systems, the following two relations hold:

$$
Ln_3M_5O_{12} = 3LnMO_3 + M_2O_3
$$
 $\Delta S > 0$ [9]

$$
LnMO_{3} = \frac{1}{5}Ln_{3}M_{5}O_{12} + \frac{1}{5}Ln_{2}O_{3} \qquad \Delta S \approx 0. \quad [10]
$$

Negative entropies of formation of both the perovskites and the garnets are deduced from [9] and [10] as follows:

$$
\frac{1}{2}Ln_2O_3 + \frac{1}{2}M_2O_3 = LnMO_3 \qquad \Delta S < 0 \qquad [11]
$$

$$
\frac{3}{2}Ln_2O_3 + \frac{5}{2}M_2O_3 = Ln_3M_5O_{12} \qquad \Delta S < 0. \quad [12]
$$

On the basis of the " ΔH and $T\Delta S$ terms for reaction [6]" section, ΔS values for [9] in the Al system are assumed to be 14.21 J K^{-1} mol^{-1}. Provided that ΔS values for [10] in the Al system are zero, the following two relationships hold:

$$
\frac{1}{2}Ln_2O_3 + \frac{1}{2}\alpha - Al_2O_3 = LnAlO_3
$$

$$
\Delta S = -7.11 \text{ J K}^{-1} \text{ mol}^{-1}
$$
 [13]

$$
\frac{3}{2}Ln_2O_3 + \frac{5}{2}\alpha - Al_2O_3 = Ln_3Al_5O_{12}
$$

$$
\Delta S = -35.53 \text{ J K}^{-1} \text{mol}^{-1}.
$$
 [14]

These negative ΔS values suggest that Ln_2O_3 phases possess relatively large entropies.

CONCLUSION

High-temperature solution calorimetry using a 2PbO \cdot B₂O₃ solvent at 977 K was performed for $Ln\overline{MO}$ ₃ perovskites and $Ln_3M_5O_{12}$ garnets ($Ln = La-Lu$, Y; $M = Al$) Ga), α -Al₂O₃, and β -Ga₂O₃. The stability of $LnMO_3$ against the disproportionation to garnet plus sesquioxide is controlled almost entirely by ΔH and $P\Delta V$ but not by $T\Delta S$. On the contrary, the stability of $Ln_3Al_5O_{12}$ against disproportionation to perovskites plus sesquioxide is controlled not only by ΔH and $P\Delta V$ but also by T ΔS . The *P-T* boundary between $Ln_3M_5O_{12}$ and $3LnMO_3 + M_2O_3$ has a negative slope. The positive ΔS and negative ΔV for the disproportionation are caused by an increase in coordination number and an *increase* in bond distance. ΔH for perovskite formation is mainly controlled by two factors, the strengthening of the ionic bond in Ln_2O_3 with decreasing ionic radius of Ln^{3+} , and the *weakening* of the ionic bond between *Ln* and the distant four O atoms in $LnMO_3$ with decreasing ionic radius of Ln^3 ⁺. ΔH of garnet formation is mainly controlled by two factors, the strengthening of the ionic bond in Ln_2O_3 with decreasing ionic radius of Ln^{3+} , and the deviation of the ionic radius of Ln^{3+} from the optimum size for the garnet structure. ΔS values of both perovskite formation and garnet formation are deduced to be negative, which suggests that Ln_2O_3 phases possess relatively large entropies.

ACKNOWLEDGMENTS

This study was supported by the STA fellowship provided by the Science and Technology Agency, Japan, and by the National Science Foundation (Grant DMR 92-15802). Valuable discussions with Drs. L. Topor and E. Takayama-Muromachi are much appreciated. We thank Drs. K. Bose and I. Petrovic for helpful suggestions on the calorimetry experiments.

REFERENCES

- 1. G. A. Massey and J. M. Yarborough, *Appl. Phys. Lett.* **18,** 576 (1971).
- 2. B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, *Appl. Phys. B: Photophys. Laser Chem.* 30, 117 (1983).
- 3. J. E. Greedan, *J. Less-Common Met*. 111, 335 (1985).
- 4. P. Dougier and P. Hagenmuller, *J*. *Solid State Chem*. 15, 158 (1975).
- 5. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, *Phys. Rev. Lett.* **71,** 2331 (1993).
- 6. S. J. Schneider, R. S. Roth, and J. L. Waring, *J*. *Res*. *Natl*. *Bur*. *Stand*., *Sect*. *A* 65, 345 (1961).
- 7. G. J. McCarthy, W. B. White, and R. Roy, *Mater*. *Res*. *Bull*. 4, 251 (1969).
- 8. G. J. McCarthy, C. A. Sipe, and K. E. McIlvried, *Mater*. *Res*. *Bull*. 9, 1279 (1974).
- 9. G. J. McCarthy, P. V. Gallagher, and C. A. Sipe, *Mater*. *Res*. *Bull*. 8, 1277 (1973).
- 10. C. D. Brandle and H. Steinfink, *Inorg*. *Chem*. 8, 1320 (1969).
- 11. H. L. Yakel and W. C. Koehler, *Acta Crystallogr*. 16, 957 (1963).
- 12. S. Geller and E. A. Wood, *Acta Crystallogr*. 9, 563 (1956).
- 13. P. Bordet, C. Chaillout, M. Marezio, Q. Huang, A. Santro, S.-W. Cheong, H. Takagi, C. S. Oglesby, and B. Batlogg, *J*. *Solid State Chem*. 106, 253 (1993).
- 14. M. Marezio, J. P. Remeika, and P. D. Dernier, *Acta Crystallogr*., *Sect*. *B* 26, 2008 (1970).
- 15. T. Shishido, K. Okamura, and S. Yajima, *J*. *Am*. *Ceram*. *Soc*. 61, 373 (1978).
- 16. S. Geller, P. J. Curlander, and G. F. Ruse, *Mater*. *Res*. *Bull*. 9, 637 (1974).
- 17. P. D. Dernier and R. G. Maines, *Mater*. *Res*. *Bull*. 6, 433 (1971).
- 18. M. Marezio, J. P. Remeika, and P. D. Dernier, *Mater*. *Res*. *Bull*. 1, 247 (1966).
- 19. M. Marezio, J. P. Remeika, and P. D. Dernier, *Inorg*. *Chem*. 7, 1337 (1968).
- 20. T. Katsura, T. Sekine, K. Kitayama, T. Sugihara, and N. Kimizuka, *J*. *Solid State Chem*. 23, 43 (1978).
- 21. N. Kimizuka, A. Yamamoto, H. Ohashi, T. Sugihara, and T. Sekine, *J*. *Solid State Chem*. 49, 65 (1983).
- 22. I. Barin, ''Thermochemical Data of Pure Substances.'' VCH Verlagsgesellshaft, Weinheim, Germany, 1989.
- 23. A. Navrotsky, *Phys*. *Chem*. *Miner*. 2, 89 (1977).
- 24. A. Navrotsky, *Phys*. *Chem*. *Miner*. 24, 222 (1997).
- 25. K. Leinenweber, J. A. Linton, A. Navrotsky, Y. Fei, and J. Parise, *Phys*. *Chem*. *Miner*. 22, 251 (1995).
- 26. Y. Hu, A. Navrotsky, C.-Y. Chen, and M. E. Davis, *Chem*. *Mater*. 7, 1816 (1995).
- 27. J. Liu, L. Topor, J. Zhang, A. Navrotsky, and R. C. Liebermann, *Phys*. *Chem*. *Miner*. 23, 11 (1996).
- 28. I. Petrovic, P. J. Heaney, and A. Navrotsky, *Phys*. *Chem*. *Miner*. 23, 119 (1996).
- 29. I. Kiseleva, A. Navrotsky, I. A. Belitsky, and B. A. Fursenko, *Am*. *Miner*. 81, 658 (1996).
- 30. V. E. Lamberti, M. A. Rodriguez, J. D. Trybulski, and A. Navrotsky, *J*. *Mater*. *Res*. 11, 1061 (1996).
- 31. L. Chai and A. Navrotsky, *Am*. *Mineral*. 81, 1141 (1996).
- 32. S. Fritsch and A. Navrotsky, *J*. *Am*. *Ceram*. *Soc*. 79, 1761 (1996).
- 33. H. Gan, M. C. Wilding, and A. Navrotsky, *Geochim*. *Cosmochim*. *Acta* 60, 4123 (1996).
- 34. E. Takayama-Muromachi and A. Navrotsky, *J*. *Solid State Chem*. 106, 349 (1993).
- 35. A. D. Shannon, *Acta Crystallogr*., *Sect*. *A* 32, 751 (1976).
- 36. H. R. Hoekstra and K. A. Gingerich, *Science* 146, 1163 (1964).
- 37. T. Atou, K. Kusaba, Y. Tsuchida, W. Utsumi, T. Yagi, and Y. Syono, *Mater*. *Res*. *Bull*. 24, 1171 (1989).
- 38. J. P. Remeika and M. Marezio, *Appl. Phys. Lett.* 8, 87 (1966).
- 39. F. Euler and J. A. Bruce, *Acta Crystallogr*. 19, 971 (1965).
- 40. A. Navrotsky, *Geophys. Res. Lett.* 7, 709 (1980).
- 41. A. Navrotsky, ''Structure and Bonding in Crystals'' (M. O'Keeffe and A. Navrotsky, Eds.), Vol. II. Academic Press, New York, 1981.
- 42. J. M. Neil, A. Navrotsky, and O. J. Kleppa, *Inorg*. *Chem*. 10, 2076 (1971).
- 43. E. Ito, M. Akaogi, L. Topor, and A. Navrotsky, *Science* 249, 1275 (1990).
- 44. J. L. Yarger, K. H. Smith, R. A. Nieman, J. Diefenbacher, G. H. Wolf, B. T. Poe, and P. F. McMillan, *Science* 270, 1964 (1995).
- 45. H. R. Hoekstra, *Inorg*. *Chem*. 5, 754 (1966).
- 46. D. T. Cromer, *J*. *Phys*. *Chem*. 61, 753 (1957).
- 47. JCPDS 43-1015.
- 48. JCPDS 22-369.
- 49. JCPDS 21-579.
- 50. JCPDS 43-1029.
- 51. JCPDS 43-1008.
- 52. JCPDS 43-1014.
- 53. JCPDS 43-1006.
- 54. JCPDS 43-1036.
- 55. JCPDS 44-1268.
- 56. JCPDS 43-1007.
- 57. JCPDS 43-1034.
- 58. JCPDS 43-1037.
- 59. JCPDS 43-1021.
- 60. JCPDS 31-22.
- 61. M. Marezio, P. D. Dernier, and J. P. Remeika, *J*. *Solid State Chem*. 4, 11 (1972).
- 62. JCPDS 8-147.
- 63. JCPDS 42-169.
- 64. JCPDS 32-16.
- 65. T. S. Chernaya, L. A. Muradyan, A. A. Rusakov, A. A. Kaminskii, and V. I. Simonov, *Kristallografiya* 30, 72 (1985).
- 66. JCPDS 17-734.
- 67. JCPDS 12-758.
- 68. JCPDS 12-764.
- 69. JCPDS 14-128.
- 70. J. Sasvári and P.-E. Werner, *Acta Chem. Scand.*, *Ser. A* 37, 203 (1983).
- 71. JCPDS 13-426.
- 72. JCPDS 22-1108.
- 73. JCPDS 12-769.
- 74. JCPDS 23-589.
- 75. A. Kirfel and K. Eichhorn, *Acta Crystallogr*., *Sect*. *A* 46, 271 (1990).
- 76. JCPDS 43-1013.
- 77. JCPDS 43-1012.
- 78. J. E. Weidenborner, *Acta Crystallogr*. 14, 1051 (1961).
- 79. H. Huess, G. Bassi, M. Bonnet, and A. Delapalme, *Solid State Commun*. 18, 557 (1976).
- 80. M. Bonnet, A. Delapalme, H. Huess, and M. Thomas, *Acta Crystallogr*., *Sect*. *B* 31, 2233 (1975).
- 81. B. V. Kuvaldin, R. V. Bakradze, L. E. Fykin, and V. V. Martyshchenko, *Krystallografiya* 25, 1155 (1980).
- 82. R. Diehl and G. Brandt, *Mater*. *Res*. *Bull*. 10, 85 (1975).
- 83. J. C. Guitel, M. Marezio, and J. Mareschal, *Mater*. *Res*. *Bull*. 11, 739 (1976).
- 84. M. Marezio and P. D. Dernier, *Mater*. *Res*. *Bull*. 6, 23 (1971).
- 85. P. Coppens and M. Eibschütz, Acta Crystallogr. 19, 524 (1965).